
21

Scripting is a great strength of the Classic Amiga, because it allows users to
combine and automate operations from all different programs in the sys-
tem, passing data automatically back and forth, using the best features of

each to get results that no one program, however bloated, could match.
The new central scripting language of the Amiga Digital Environment (DE) is
code-named SHEEP (This is an internal working name for this language. The
final name will be different). It handles scripting, querying, Shell and inter-
object communication, and general programming. It enables the user to inter-
act with objects in the AmigaDE, and allows objects within the DE to control
each other. It is the glue that holds the flexible Digital Environment together
and makes everything universally scriptable, configurable and modifiable.
Having a language like SHEEP as an integral part of a system enhances its use-
fulness, as most applications will then be written with scriptability in mind. That
integration allows users to harness the functionality available in the OS or appli-
cations and combine it with custom code to fill in what�s missing. SHEEP will
handle both GUI and command-line interaction and make it all as painless as
possible.
Heading up the SHEEP project for Amiga is Wouter van Oortmerssen a pro-
grammer with a stellar reputation on the Classic Amiga who has jumped at the

chance to help design the new one. Wouter is best known for his concise yet powerful Amiga-E language, yet this is just
one of more than a dozen languages he�s designed en route to his doctorate in Computer Science. He�s now working full
time for Amiga Inc., developing SHEEP.
Tim Sweeney, creator of the 3D shooter Unreal and programmer extraordinaire, summed up his thoughts of Wouter�s
talents this way: �Wouter is a brilliant programming language designer, and possibly the most prolific one on Earth--he
wrote the E programming language back in the early Amiga days, and has since implemented a ton of imperative, func-
tional, visual, reactive, linear, and other crazy languages. We email once in a while, and whenever I describe some new
language idea I have, he's like: �I implemented that 5 years ago, and here are the problems you run into...��
Heritage
The Classic Amiga scripting language was ARexx, a standard
component since release 2 a decade ago. ARexx was derived
from Rexx, the original IBM mainframe version, with many
Amiga-specific extensions. Versions of Rexx have since been
ported to many other systems, like OS/2, Unix and Qdos.
Rexx is a general-purpose high-level language, versatile yet
easy to learn.
The true significance of ARexx stemmed from the way it became a standard part of the Classic Amiga. Almost every
system component, from applications to the desktop, and even emulators for other systems, had an ARexx port, so any
operation that could be performed manually with the mouse or keyboard could be automated under ARexx control. In
some cases this allowed operations or custom configurations that were only feasible with
ARexx support.
There was no need for each program to have its own arcane scripting language built-in, as

�If you want to get some job done on your computer,
either it is very easy or it is extremely difficult,� says
Wouter van Oortmerssen. The decisive factor, he says,
is whether you have an application suited to the job at
hand. �And even when you have a GUI app that can do
what you want to do, GUI's are traditionally very inflexi-
ble, especially for repetitive tasks. For those [times],
there are very few alternatives to using a scripting lan-
guage,� he says.

22

has led to notorious compatibility and security problems in clumsier systems. While the idea was brilliant, well-executed
and integrated, ARexx was not perfect�it dated back to the 1980s, and could be slow, prolix or clumsy at times. It did
a lot, but could have done more.
Before ARexx became part of the system, old Amigas were shipped with an implementation of Microsoft BASIC. As on
many home computers, users were encouraged to write their
own programs in this dialect, extended with support for
Amiga multimedia. While superior to their other offerings,
Microsoft BASIC was slow, big and buggy. It was inflexible
and incompatible with 32-bit systems, so third party pack-
ages like Amos, Blitz, Maxxon and HiSoft BASICs arrived in
the 1990s to fill the gap between ARexx and professional
programming languages like C, Oberon and hardcore assem-
bly language.
Enter SHEEP
SHEEP fills that niche, as well as the need for a standard, powerful scripting language. It�s quite possible to write appli-
cations and utilities in SHEEP, and is in fact a very efficient approach for building prototypes or solving the sort of prob-
lems that might keep one programmer busy for anything from a few minutes to a few days. While compilers for Java, C,
C++ and our ultra-efficient portable VP-code are more suitable for larger projects or routines likely to be run many
times, SHEEP�s interpreted, functional design delivers results
sooner, if not always more quickly. It�s ideal for interactive
development and testing, an area where compiling languages
cannot compete.
You can go from editing a SHEEP program to running it, and
back into the editor of your choice, immediately. Future ver-
sions will allow your SHEEP code to be compiled after it has been tested, and to make secure, stand-alone programs
that outperform Java and match the speed of compiled C++ in many cases.
SHEEP is ideal for installation scripts, communication between programs�much like ARexx, including access to ARexx in
emulated Classic Amiga environments�and the sort of hacks that would be written in shell script, BASIC, E, Perl or
Python on old systems. However, SHEEP is far more secure than ARexx, C or BASIC. There�s no possibility of accidental-
ly overwriting memory or clobbering some system resource unrelated to your program. SHEEP forswears the dangerous
POKEs and pointers that fill the gaps in other languages, yet it can manipulate complex data structures simply and effi-
ciently.
SHEEP can be used for database queries, as SQL (Structured Query Language) is on big systems. The new Amiga
boasts immensely powerful ways of storing and organizing data; SHEEP provides a clear window on the Digital
Environment.
Breeds of SHEEP
SHEEP can be interpreted, for ease of maintenance, or compiled into fast VP code. SHEEP is a synthesis of several
Classic Amiga concepts and good ideas from elsewhere, into a powerful yet simple language that is easy to read and
write, without the arbitrary and arcane punctuation of many other languages.
SHEEP works without the �garbage collection� that unpredictably wastes time and memory in most other languages that
allow dynamic data-structures. It does this by using new functional programming principles
and automatic memory management, without forcing the programmer to use it any differ-
ently from conventional languages.

I expect SHEEP to go much further than ARexx,� says
van Oortmerssen. �ARexx depended on interfaces being
implemented [into applications], so if the programmer
didn't �expose� certain functionality, ARexx had no way
to get at it.�

ARexx was tightly integrated with the Amiga OS and
applications and �allowed you to do the kind of pro-
gramming that just isn't possible in any other way,�
says van Oortmerssen. �Besides, ARexx was also a nice
design that fitted its purpose, simple and friendly so
everyone could pick it up and do useful things with it
quickly.�

23

SHEEP is polymorphic so you can write programs oblivious of the exact types of data they will manipulate, and re-use
code without making type-specific versions or complicated, slow and error-prone run-time tests. SHEEP lets you specify
data types when it could make programs more efficient if they were preordained, but it doesn�t force you to do so in
more general cases. New types can be defined, with any combination of data inside. Types can be a superset of several
types. Thus a tree with any number of branches or leaves can be defined in one line:

type tree = branch(left:tree, right:tree) | leaf(data)
This defines two types, �branch� and �leaf,� and a supertype,
�tree,� which can be used to refer to the value of either of
those types. The vertical bar indicates that a tree (or sub-
tree, implicitly) can be either a branch made up of further
(sub) trees or a leaf, with a �data� property.
Every value has a type, but it has the most general type �any�
unless you specify otherwise. If a general type is passed into
a more specific context, as when a string of characters is
passed to a routine expecting an integer, SHEEP coerces the string to a number, and raises a dynamic type error if it
won�t fit. If both types are strictly defined, the compiler detects mismatches before the program runs.
SHEEP reports errors in context. If in doubt, it issues a warning. SHEEP has built-in error-tracking and exception han-
dling, so if something goes wrong you can identify the problem and fix it, or alter the program so that the special case
will be spotted and resolved automatically, without cluttering up the source with conditional tests. This gives beginners
support and reassurance, without cramping the style of experts.
Counting SHEEP
SHEEP uses the concept of �vectors� to express structures normally stored in static arrays or dynamic lists. SHEEP vec-
tors combine the efficiency of arrays with the dynamism of lists. Complete or partial vectors may be compared, extend-
ed or replaced.
Functions may take any number of parameters, applying defaults or patterns if necessary, and may return any number
of values. You can tag parameters when you call a function, so you need only specify the parameters you care about,
and they may be in whatever order you like. Thus you could
specify desired details of a new screen, letting others default,
by calling an �openscreen� function like this:
openscreen width: 640

height: 480
title: "Goats and SHEEP"
colourdepth: 32
foreground: 1
background: 0

You can define several instances of a function, depending on the type or value of parameters you want to deal with.
SHEEP automatically chooses the right one to match a particular function call. Gratuitous brackets are not needed,
either in the call or the function definition.
Pattern matching is a key feature of SHEEP, simplifying programs. SHEEP can search out patterns within lists, splitting
them according to the position of the pattern. It can just as readily merge patterns and
lists. Pattern matching also allows particular values to be extracted from user-defined data
types.

��The new Amiga OS, is much more based on objects,�
says van Oortmerssen, �which will automatically expose
their programmable interfaces to the world. The poten-
tial for ARexx-like scripting is therefore far greater.�
SHEEP provides a window to the AmigaDE and its
immensely powerful ways of storing and organizing
data.

�SHEEP has automatic memory management that
requires almost no extra memory compared to what is
in use, unlike most �garbage collected� languages (like
Java)� points out van Oortmerssen. �It can therefore
run small scripts in as little as 10kb (code + data),
which makes it suitable for Personal Data Assistants,
embedded systems, etc.� And small is good.

24

There are several neat ways to test large amount of data in one step. �Find� performs a conditional search through a
vector, returning an index of the first match. �Filter� is similar but returns a vector denoting all the matches. �Fold� com-
bines all the matches, accumulating a total.
Spacing
Sheep is a no-limits language, with no restriction other than available memory on the length of strings, vectors, identi-
fiers, programs or individual lines.
SHEEP notes the indentation of the first line in a list. If a new line is indented the same amount as the previous one, it�s
a new statement. If it�s indented more, it�s taken as a continuation, allowing long statements to be presented neatly. If
it�s indented less, the next token implies the end of the list.
Functionality
One striking feature of SHEEP is the way that you can teach it rules in a simple format, and expect it to find and apply
them in context. You can add functions, or definitions, with-
out having to wrap them in obscure syntax. To take a very
simple example, imagine you need to report the number of
files a program has copied in a human-friendly way. Rather
than resort to a sequence of tests, or sub-literate laziness
like "n file(s) copied," you can write:

print (nfiles n) + " copied"

define nfiles 0 -> "no files"
define nfiles 1 -> "one file"
define nfiles n -> n + " files"

Strings can be built up as simply as they could be in Java.
So if you want special formatting - like padding, or like this
example�you insert extra functions. References to "file(s)"
become a thing of the past, hurrah! The minimal Sheep program is just one line long. Here�s the classic �Hello World"
program, fully expressed in SHEEP:

print "Hello, World!\n"

The only complication here is the "\n" sequence, which tells the system to make a new line after printing "Hello, World!"
This is the same syntax as C, VP code and other programming languages. Tabs can similarly be written \t, embedded
double quotes are written \", and \\ stands for one literal backslash.
Sorting
Here�s a slightly more complicated example�an implementation of the QuickSort algorithm, which requires a couple
dozen lines of code in many languages. SHEEP can do it in just four (the lines starting with two dashes are comments)
with no weird symbols apart from brackets, plus signs and arrows, all of which have relatively obvious meanings.
-- polymorphic quicksort
define qsort [] -> []
define qsort [pivot] + rest ->
(qsort filter x in rest where before x pivot) + [pivot] +
(qsort filter x in rest where not before x pivot)

While SHEEP's focus is on simplicity and small tasks�it
is not meant to replace C++/Java for most professional
programmers�it is designed to scale up from scripting
to more complex code very effectively. This is achieved
with features transparent to the beginner programmer
but available (and useful) for more advanced program-
ming. �And the language design,� points out van
Oortmerssen, �in general allows for faster code, all
without hurting its friendliness.� As such, SHEEP is
aimed squarely at its target: Helping users maximize
their productivity in the Digital Environment. It is a key
component of the new Amiga, and its unique singularity
and tremendous strengths will bring programmers
flocking to the New Amiga.

You�ll notice there�s no need to declare the types of data items like x, rest or pivot. This is not sloppiness�the data type
simply doesn�t matter to SHEEP. The same code will happily and efficiently sort text, whole numbers, or fractions,
whereas old-fashioned languages would need a separate routine for each.
In this case,
print qsort [5,2,6,3,8]

returns
[2,3,5,6,8]

You don�t have to warn the program about the length of the vector or check it inside the program. One size fits all, as
the program is recursive�it works by calling itself repeatedly, splitting the list into smaller parts until they�re all in order,
but you don�t have to worry about programming or checking the stack�SHEEP looks after that for you.
The definition of what order the sorted list should be delivered in is similarly flexible. The term �before� in the listing
could have any name, and any definition associated with it which can determine the order of two items. If we want to
sort a vector of whole numbers, known as int(egers), we define �before� like this:
define before x:int y:int = x<y

This says that when �x� and �y� are integers, �before� is true if
�x� is less than (<) �y.� Equivalent rules may be defined for
other types of data, and you need not be limited by them�if
you want punctuation at the end of a sorted list of words
(rather than in ANSI or Unicode order), you may define an
arbitrary function to put things the way you want them.
The �filter� operation scans through a list, assigning each
value in turn to �x� and asking �before x pivot?� If this is true,
the value �x� precedes the value �pivot�, so �x� is moved to the
result. Once all the �rest� has been scanned, the list is more
nearly in order, as early values have been removed. �Quicksort�
calls itself for progressively shorter lists, until every value is in
its proper place.
Splitting and Joining SHEEP
The expression �[pivot] + rest� shows how lists of values (or �vectors�) may be split and joined in SHEEP. The expression
takes a vector and assigns the first element to �pivot� and the remainder to �rest.� The �+� operation can both join and
split patterns. It allows us to create vectors like this:
a = [1,2,3]
a = a+[4,5,6]

This leaves �a� holding the vector [1,2,3,4,5,6]. The �+� operation constructs vectors, while pattern matching inspects
and deconstructs them. Imagine a function �chop,� which is passed a vector. The following instruction takes the vector
apart:
define chop [1,2]+v

The pattern matching operation splits the parameter in one vector of length two, which
must contain the integers 1 and 2, and puts the remainder of the vector into �v,� so �v�
becomes [3,4,5,6] if �chop� is passed the value assigned to �a.�

25

SHEEP delivers some of the same excellent properties
as ARexx: �It�s simple and friendly right from the start,�
says van Oortmerssen. �ARexx, however, had the prob-
lem that people easily outgrew it: As soon as they mas-
tered the language, they noticed that slightly larger
scripts would run dreadfully slow and easily become
messy. SHEEP is designed to last you a lot longer,� he
says.

26

Graphics
The last example shows how SHEEP can express a classic graphics algorithm. It assumes that a device with appropriate
width and height is ready to accept output from the �plot� statements.
This example shows that the functional sophistication of SHEEP is not an obstacle to conventional programming. Apart
from the lack of syntactical clutter, the Mandelbrot listing could be
in any block-structured language. It can be run and edited as
readily as interpreted BASIC, yet has the speed and structure of a
modern compiled dialect:
-- SHEEP Example Mandelbrot fractal generator
width = 640
height = 480
maxdepth = 128

define count x:real y:real do
xc = x
yc = y
i = 0
while i<maxdepth and x*x+y*y<4.0 -- |z| < 2
t = x
x = x*x-y*y+xc -- z = z*z + c
y = (t+t)*y+yc
i = i+1

end
return i

end
w = 3.5 -- change these to zoom or move about
h = 2.8
top = -1.6
left = -2.0
for x = 0 until width do

for y = 0 until height do
plot w x y (count x/width*w+left y/height*h+top)

end
end

Conclusion
When there are already thousands of computer languages in existence, you need special reasons to propose a new one,
let alone develop something as sophisticated as SHEEP, which is simple on the surface yet built on cutting-edge
Computer Science within.
SHEEP borrows concepts from classics like ARexx, Prolog, BASIC and Perl, and newer languages like Python and Java,
and benefits from the practical experience of 15 years of Classic Amiga product development and integration. SHEEP
adds significant new ideas, eliminates dangerous or over-complicated gimmicks, and has the cohesion that comes from
one brilliant mind, rather than a committee of lobbyists.
SHEEP demonstrates that if a job�s really worth doing, it�s worth approaching afresh. SHEEP not only is something new
and exciting�it allows and facilitates great things that would not otherwise be practical. It is a
key component of the new Amiga, and nothing else can match it.

